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CHAPTER I

INTRODUCTION

p—
ROy

Fracture mechanics, the study of failure mechanisms

and the development of failure prediction criteria for en- ]
gineering structures, focuses considerable attention on
the stress distribution in the neighborhood of a crack em-
bedded in an elastic body. The intensity of the elastic

stress field around the tip of a sharp crack plays a domi- 'q

v -

nant role in fracture analysis. Irwin (1) showed that the
Griffith (2) fracture theory, originally based on energy ¢

considerations, is equivalent to an approach using the con-

cept of crack-tip, stress intensity factors. The basic §
idea of the combined theory is that the crack propagates
under static load when the stress intensity in the region

near the crack tip reaches a certain critical value, say

Kc. For a given material the combination of crack size
and loading at incipient fracture results in a stress in-
tensity factor equal to Kc. When the load or crack size
is kept below this threshold point, the severity of the
crack tip is measured by the "stress intensity factor" K

which assumes the general form
K = Og °Y* Vi &

This K factor is a quantity determined analytically or

s o s
z :
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experimentally and varies as a function of the crack length
g, the crack configuration and external geometry factor v,
and the manner in which the internal loads or far field
stresses o are applied. Successful application of the
theory requires that the crack tip plastic zone size be
small compared to the crack dimensions. This permits the
use of elasticity theory to determine the stress intensity
factors.

As a rule, the crack-tip stress state in a structural
component must be described by at least two parameters, say
K K

and K, corresponds to Mode I loading which pro-

I I I
duces symmetric stress states near the crack tip and K1
stands for the amplitude of the skew-symmetric portion or
Mode II loading. The criterion of fracture now requires a

combination of K; and K reaching some critical value, i.e.

II

KII) T Fc

F (KI,
If the stress state is triaxial in nature, a third parameter

K is usually required and the fracture criterion must

IIE
be modified accordingly.

Common experience indicates that a crack follows a
path in a structural component as dictated by the stress
field. At each instant, the direction of crack propagation

depends on the energy state and the material properties in

a region ahead of the crack tip. It is of utmost importance
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to be able to predict the direction of crack initiation.
One common method used to predict crack growth which
may be useful in mixed mode problems is the criterion of
maximum strain energy release rate. The strain energy
release rate}y represents the amount of energy released
during an incremental increase in crack area. The critical
strain energy release rate criterion and the K, criterion
can be related. For specimens subject to Mode I loading,

2
¢ﬁ equals C1 KI where C, is a constant depending on whether

1

the body is iﬁ a state of plane stress or plane strain.

Analytical problems for the stress intensity factors
are available for a number of crack geometries and boundary
configurations (3-11). The largest class of solved prob-
lems apply to the conditions of Mode I and II loading for
states of plane stress or plane strain. A large complement
of mathematical methods have been used to seek solutions
and are reviewed in (9,10). The major analysis techniques
used for K calculations are complex variable, conformal
mapping, Breen's function, Riemann-Hilbert problem, Wiener-
Hopf method, singular integral equations, and asymptotic
approximations. Authors utilizing these methods have pro-
duced hundreds of solutions many of which are tabulated in
(11) . Analytical solutions for three-dimensional cracked
bodies are more limited, generally restricted to the penny-
shaped and elliptical crack geometry.

Analytical solutions for K factors, although large




in number, do not fully satisfy the designer's needs when
analyzing complex structures. The presence of stiffeners,
irregular geometries and complex boundary loadings often
complicate the real problem. Thus considerable attention
has been focused on numerical methods particularly finite
element techniques.

Early studies of fracture mechanics problems involv-
ing the finite element method have been carried out by
Swedlow(12) , Tuba (13), and Watwood (14). They attempted
a straightforward application of the technique with no
special attention given to the stress singularity. The
specimen was conceptually divided into finite elements with
a relatively high elerm=nt concentration near the crack tip.
Computational experiments indicated the need to include a
very large number of degrees of freedom in order to obtain
reasonable accuracy (12-14). The numerical value of the
stress intensity factor, determined in this manner, varies
over a considerable range, depending upon which node is
chosen for its calculation. Further study of this technique
(15,16) concerns questions about its convergence, reliabil-
ity, and convenience.

In an attempt to eliminate some of these undesirable
features, an alternative approach has been developed by
Wilson and others (15) and extended by Oglesby and Lomacky
(16) . They directly incorporated both the finite element

method and the analytical crack tip expansions to form a
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special singular crack tip element. This element centered
at the crack tip, has the deformation field given by the
elastic singular solution, with the stress intensity factors
and crack tip displacement components as the parameters
characterizing its behavior. The crack tip element is con-
nected to standard elements along its boundary, by requir-
ing the nodal displacement components on this interface to
be consistent with the crack tip solution. Finite element
results for complicated geometries using special cracked
elements are believed to easily give accuracy within 2-3%
Q7).

Evaluation of stress-intensity factors will, in most
cases require a numerical attack due to the complicating
factor of geometry. The boundary integral equation (B.I.E.)
technique is a numerical method particularly éuited to the
stress analysis of simply or multiply connected homogeneous,
elastic bodies.

The method as developed by Rizzo(18) exploits the
strong analogy between potential theory and classical
elasticity theory. Unlike Jaswon(19) Rizzo's approach is
not limited to two-dimensions and works directly with as-
signed boundary quantities instead of stress functions.

This approach depends on the knowledge of the singular sol-
ution to the Navier-Cauchy elasticity equations in two-
dimensions corresponding to a concentrated force. The

singular solution gives rise to a vector identity similar

-
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to Green's third identity for Laplace's equation. Taking
the field point to lie on the boundary contour, a boundary
formula is obtained which gives a relation between boundary
displacements and corresponding boundary tractions. Since
either of these boundary quantities, in principle, deter-
mines the other, the formula provides a constraint between
them which generates a set of simultaneous integral equa-
tions involving the unknown boundary data. The reduction
to a problem involving only the boundary surfaces reduces
the dimensionality by one and has no requirement for dis-
cretization of the region contained within the boundary
surface. This reduction in diwmensionality significantly
reduces the computational requirements.

This method has been extensively developed by Rizzo,
Shippy, Cruse and Lee (20-28). They have applied the B.I.E.
method to the following class of problems; 1) elasto-
dynamics, 2) three-dimensional elasto-static, 3) elastic
inclusion, and 4) anisotropic elastic boundary value prob-
lems . At the present time application to cracked bodies
is restricted to symmetric geometries which allow the prob-
lem to be changed from a cracked body to a mixed boundary
value problem with no cracks. The unsymmetrical crack
problem is excluded in Rizzo's formulation due to regular-
ity requirements on the boundary surfaces. These regular-
ity conditions require that the body be finite, and smooth,

and representable by unique parametric expressions.




Classical fracture problems require that the crack faces be
defined to lie on the same contour and meet sharply at the
crack tip. These conditions violate the regularity require-
ments upon which Rizzo's formulation relies.

It is the purpose of this thesis to extend the Rizzo
technique to permit its application to those crack problems
lacking symmetry. Chapter 2 presents the mathematical for-
mulation of the B.I.E. for plane cracked bodies, while the
solution technique is applied to a specific Mode I, Mode II
problem in Chapter 3. Chapter 4 presents results and dis-
cussion for two sets of problems. The first set is for
verification of the solution method and the second presents
data for the bent crack. Finally, Chapter 5 is concerned

with conclusions and applications of the developed method.




CHAPTER 2

MATHEMATICAL FORMULATION

Solutions of boundary value problems in fracture
mechanics require the analysis of bodies containing mathe-
matical models of crack-like flaws. The geometric modeling.
of these flaws generally result in configurations or geo-
metries that are non-regular as defined in (29,30). The
basic integral equation formulation developed by Rizzo (18)
requires that the body under consideration be finite and
bounded by a single smooth contour C , the contour satis-
fying certain regularity conditions (29). One regularity
condition requires that contour C possess a unique rep-
resentation in the parametric form X, = xa(s). A sec-
ond condition is imposed on the surface derivatives x;(s)
which must be continuous. The two crack faces in classicalf
fracture problems are defined to lie on the same contour;
thus, unique parametric representation of the individual
surfaces is excluded. The presence of a reentrant vertex
at the crack tip, and the existence of sharp corners,
where the crack intersects the outer boundary, violates
the second regularity conditfbn. Section 2.1 presents a
summary of the Rizzo formulation considering C to be
regular. This permits solution of a class of problems ex-

cluding the elastostatic crack problems arising in fracture

T .




mechanics. The mathematical processes required to overcome
these restrictions and to extend the B.I.E. method for
solution of general crack problems are the subject of
Section 2.2

2.1 Basic Integral Equation Formulation

The integral equation formulation presented in this
section is restricted to the analysis of classical plane
elastostatic problems for which the material may be taken
to be isotropic and homogeneousl'z. The Navier displace-
ment equations of equilibrium in the absence of body forces
are given by

(A + plu =0 (a,B = 1,2)

a,af LU uB,aa
(2.1)

where the displacement is denoted by u (xa) while X,

8
are the orthogonal cartesian coordinates Xq 0%, and A, M
are the familiar Lamé constants. Eq. (2.1) formulated for
problems of plane strain, may also embrace generalized
plane stress with suitable exchange of material constants.

The solution to this differential equation must also satis-

fy the boundary conditions for the displacements and

lA more general formulation for the 3-D elastic prob-
lem may be found in References 21,25,27.

2The formulation presented in this section 1s very
similar to that of Rizzo(18). It is presented here because
it is the foundation for mathematical extensions germane
to this thesis.




tractions on the contour C , given by

and
(x ) 2. () (2.2)

where Cl, C2

are those portions of the contour subject to
displacement-traction loading boundary conditions respect-
ively. The unit vector n 1is the outward normal vector
for the body D with components n,.

The body under consideration will be assumed finite
and bounded by a single smooth contour C, which, as
described in (29), admits a unique representation in the
parametric form xa = xa(s). Further, the derivatives
x'y(s) are assumed to be continuous. The parameter S
is the arc length along the contour from some arbitrary
origin.

Figure 1 illustrates a simply connected body with

closed contour C. For the body (D + C) under the action

of boundary tractions ta' the relation

must hold on C.

The distance between field points Q with coordinates

10 i
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X, and the source points p with coordinates §, is given by
_ _ _ 1/2
r= [(x, -§&,) (x, -€)] (2.4)

Then, concentrated forces of magnitude, =4mu(A +2u)/()x +3u),

are applied at points p = p(Ea) in the X, directions res-

*
pectively, giving rise to displacement vector u as

B
defined by Love (31)
*= oy = U,, +U (2.5)
g T Cug Gl A6 028 :
where
UaB z GaBLn r + Mr, r,8

and where e, are unit base vectors. Eq. (2.5) satisfies

Egs. (2.1) in D, provided

(A + uw)

Dy = e 3n

(2.6)

In Eq. (2.5) and in what follows, all differentiation

is with respect to the field point x. That is,

ard




where the normal is evaluated at x, also. The traction
* *
vectors tB on C corresponding to Ug are computed

from Eq.(2.3) and may be written

tB = TaB e, = TlB + T2B (2.7)
where
., —
TuB— = In r [KGQB 4qu’a r,B]
+ K [(Ln 1), nB-(Ln r),,3 n,l
and

K = 2u2/(k + 3yu)

The vectorial form of Betti's reciprocal work

theorem may be written

f(uu. TGB = ta UaB)dS =0 (2.8)
c+m

where dS is an element of arclength at Q and where the
point p = p(Ea) of D has been excluded by a small circle
m of radius p because of the singular nature of Ua and

T for r = 0. The vectors and their derivatives are

aB
taken to be non-singular and sufficiently continuous for

the usual validity of the theorem. These vectors corres-
pond to an equilibrium stress state; body forces associated

with Ua and Ta are taken as zero. It can be shown

B B




(18) that

. - =1
Lim t U .45 = 0, Lim J(; T ,d8 = ~a "u
Py B il v O of B (p)
(2.9)
where

a = (A+3u)/(4mu(A+2p)) .

Therefore, Eq. (2.8) yields

ug (p) = o flu, (@ T g(p,0) - t, (@) U,g(p,Q) 1dS o

¢
(2.10)

which is the plane counterpart of Somigliana's identity (31)
for the displacements inside the body, D, caused by surface
tractions and displacements. Eg. (2.10) is analogous to
Green's third identity of potential theory which expresses
a harmonic function in terms of the boundary values of the
function and its normal derivative. A parallel develop-
ment using Green's third identity leads to the formulation
of the Mode III problem.

The properties of the integrals in Eq. (2.10) as the
boundary C is approached are necessary for the development
of B.I.F. relating the displacements and tractions on C.

The integrals present in Eg. (2.10) are

04(p) = éfta @ Uyg(pr@aS: ¥g(p) = Ju, (@ Tyg(p,0) 38

13
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The limits as p+P of ¢B(p) and ws(p) are obtained by
assuming the point P 1lies on a smooth contour.

The second of these integrals yields =

Lim q)B(p) = wB(P) = me [K-2u M]uB + fua (Q) TaB(P’Q)dS
p*P c
(2.11)
This result is readily verified provided u, is assumed to
satisfy a H6lder condition on C and provided the singular
integral is evaluated in the sense of a Cauchy Principal
Value (32). A similar limiting procedure for the first in-
tegral gives
Lim ¢,(p)= ¢, (P) = ft (Q) u_,(P,Q) ds
p-P B B8 g © aB
(2.12)
The integral equations relating the surface tractions
to surface displacements are found from Eg.(2.10), to (2.12).

Since

Usp)y = g[¢3 (P) = ¢B(P)] (2.13)
and
am (K - 2uM) = 1/2
it results that

uB (?) = 2 g-_f\la (Q) TGB(P'Q)dS(Q)

4

-2 tha (Q) U, (P,Q)As(Q)
(2.14)

14
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As shown by Rizzo (18), Eq. (2.14) will be regular
according to the classification gf singular operators by-
Muskhelishvili (32) for values of Poisson's ratio vel0,1/2).
Given t, on C, the traction problem, the two components of Eqg.
(2.14) form a simultaneous pair of integral equations for

the unknown u,. The rigid body displacement vector

uB (p) = aB + bemB3 Ea(P)
satisfies the homogeneous form of these equations, i.e.,

ug (P)-2 gfua(o) T,a(P,Q)dS(Q)= 0  (2.15)
(]

where ag and b are arbitrary constants. Application of the

Fredholm alternative yields

ﬁ:a(m as(q) = femxs(o) t,(@) as(@) =0

€ e
(2.16)

as the necessary and sufficient conditions for the solu-
bility of Eg. (2.14). These are, of course, the conditions
that the body be in equilibrium.

It should be noted that although the Fredholm alter-
native was employed above, Eg. (2.14) is not a Fredholm

integral equation, since the term

T&B = K [(Ln r),a nB-(Ln r) '8Ny

is present in the kernel function Ta More precisely,

g °
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i

Lim
Qo-+P

Q-P

=, (P,Q) # 0

whereas a limit of zero is required for Fredholm kernels.
Nevertheless, the index k in Muskhelishvili Chapter 19 (32)
computed from Tas equals zero and the Fredholm alternative
is applicable.

Given the u on C, the displacement problem, the two
components of Eq. (2.14) form a simultaneous pair of sin-

gular integral equations for the unknown ta on C. Rizzo

proved in (18) that the homogeneous equations

ﬁa(Q) Uyg(PrR)dS(Q) = 0
C

has no nonzero solutions. Thus it may be expected that the
displacement problem formulation of Eq. (2.14) results in

unique solution t, on C for arbitrary Ui on C.

With the kncwledge of u, = uB(l) on part of C and

B
on the remaining part (mixed problem), a set of

four equations on the unknowns uéz) and tél) on C is ob-

= ¢(2)
t, =t

tained. The mixed-mixed boundary value problem may also

be formulated by extension of the above reasoning. Evalu-
ation of the displacement field (and subsequently the stress
and strain fields) internal to the boundary C may be ob-
tained through Eq. (2.10) from the boundary data given on

all contours.

16
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2.2 1Integral Equation Formulation for Cracked Plate
Geometrics

in this section, the Boundary Integral Equation (B.I.E.)
formulation necessary to solve elastostatic, edge cracked
plane problems is developed3. This formulation is restric-
ted to traction loading, although displacement or mixed
boundary conditions may be addressed with equal ease.

Direct formulation of the Boundary Integral Equation
(¢.14) applied to edge crack geometry leads to an incomplete
problem statement. This shortcoming is caused by the inher-
ent restriction that the complete contour of body D be des-
cribed by a unique parametric represertation X = xB(s). The
upper and lower crack faces violate this condition. The
other restriction on the continuity of xé(s) must also be
addressed since a discontinuous change in (s) occurs at
the crack tip, and may occur at the crack corners.

The method is first illustrated for the case of a
crack with Mode III loading, which is equivalent to the
Dirichlet probler. This classical problem (30,33) is formu-
lated beginning with Green's third identity yielding the

governing integral equation

w(p) - -Tl; fW(Q)' K(Q,p)dS(Q) = F(p)
C (2.17)

3. Throughout this thesis attention is restricted to edge
crack problems. However, the method discussed is appli-
cable to internal crack geometries by reformulating Eq. (2.14)
to account for multiply connected regions.

17
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where:

" Bk gl ow 2
c
= o X K
K(Q,P)= (x-x,) 2% + (y-y )2
)
(o]

r2 = [xmx)? + (y-y )%

Eg. (2.17) relates the unknown displacement W in the z-
direction to an applied shear load which is proportional to
%% (Q) on the boundary C. Q and P are field and reference
points on the boundary C, and n is the unit normal at point
Q, and x,y are the usual cartesian coordinates. The deri-
vation of Eq. (2.17) requires the same restrictions as im-
posed on Eq. (2.14) pertaining to unique parametric repre-
sentation of C and continuous surface derivatives x&(s).
Because the Mode III governing integral Eq. (2.17) is
simple and has similar mathematical behavior to the Mode I
and II formulation it is selected for initial investigation.
A simple Mode III B.V.P. is defined with geometry
illustrated in Fig. 2. It consists of a right-circular
cylinder of radius R with a sharp Zwo wedge cut out begin-
ning at the center line of the bar. The selection of an
appropriate traction loading results in a closed form ana-

lytical solution suitable for comparison with the integral

equation results. Analytical solution of the Mode III

18
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problem begins with the definition of the usual cylindrical
coordinates r,0,z with origin at the bar'"s center. The gov-

erning differential equation is the classical
where W=mw (p,0) p= r/R
14
B SISO RN oo e
The boundary conditions are defined as,

a) on the upper wedge face, 8 =V,

Q0

lawg=17T =20
B3 e

b) on the lower wedge face, 0= 2n -wb

u

1 Sw _ _
vp3e - T, 70
c) on the circular boundary, £ =1
ow uB

LT cos) T(0-V¥,)

H —h
3.p p=1 2 R _77?:$;T

Solution of the harmonic equation and satisfaction of the

B.C. yields the following results for the boundary displace-

ments

a) on 0= y_ Wip ¥o) = o°

b) on 8= 2m-y Wip,~¥,) = -oB

c) onp =1 W(l1,8) = cos %B(e -wo):
where "B = n/2(n “¥,)

19
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Integral Eq. (2.17) is formulated for a modified cir-
cular wedge geometry. The crack tip and. crack corners are
rounded with circular arcs of radius €y to insure starting 1
with a contour C whose surface derivatives are continuous

and wo is assumed to be nonzero so the two crack faces are

e e T

separate and distinct. This modified geometry shown in

Fig. 3 meets all the restrictions imposed on Eq.(2.17).

R

S TP

The upper wedge surface is labeled Cl' the circular

boundary C2, the lower wedge surface C, and the crack tip

3
and upper and lower corner contours C4, C5 amd 06 respec-
tively. Eq. (2.17) is applied to this modified geometry
and the resulting equation separated into six parts. Each
of the parts represents a unique portion of the I.E. for

reference points located on individual contours Ci ’

i=1to 6. This yields:

1
=

1 1

CZ Cj
1 1 i

s [ W4(Q4)K4(Q4’Pi)ds4(04)‘ = /WS(QS)KS(QS,Pi)dSS(QS)

Cq Cs '

1

C6 = Fi(Pi) i=1,6

no sum on i

(2.18
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where:
F,(Py) _ = %%1(03)Ln r;% ds;(Q)
3
(XJ

90X+ Y
- Xoi)yot + (yj - Yoi)gﬁ;L

r 2 vz {(x Ol 52 o)
ij j oi

£
it

displacements on 19

P.,Q. = field and reference points on ry

Points P and Qi include all points in the set which form
the contour Ci: dSi are incremental arcs on Ci for i=1 to 6.
The operation limite€; -0 is performed on Eq. (2.18). The

integral over the surfaces C4, C. and C6 when i = 1,2, or 3

5
yields:

|

Lim fw Q,)K,(Q,,P.)dS,(Q,) = Lim /W-( ,P.)45:(Q,)

elwc4(4441 4482*0C>°sl’55
4 5

= Lim /W(Q)K(Q,P.) (Qg)=0 i =1,2,3
€20 g, 66 66 i)as(Qg)

provided points FK at the crack tip and each of the cor-

ners are excluded from the set of reference points Pi. The

——
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exclusion of points ?K from Eq.(2.18) imposes no limitation
on the eventual numerical solution of the equation set. This
is an obvious result of the numerical solution technique
which requires discretization of the equations with the ac-
companying freedom of selecting a finite number of reference
points. The elimination of a small set of reference points
?K offers no special restriction nor any great inconvenience.
The exclusion of points PK also allows the remaining integral
equations for i = 4,5 and 6 in the Eq.(2.18) system to be
ignored. For, when the limit e{'o is performed and the points
PK are excluded from the reference set, these equations are

eliminated.

Equation (2.18) applied to the special right circular cylinder

problem described above, now becomes,

2T= Yo
-6 0-
W (8,) -%/wzm 1~Cocos Co¥ol . jido
1-28-cos(B8yp )+6
h o & " o
7 o
l L (6) 60 sin(Z wo) ds
+ T 3 §?+502 - 25'56 cosz\Po
2m-Y

- m (0-Yo) 2
m/cos m:lkpz—)— Ln [l-z&o-cos(e-wo)+éo as

Yo (2.19a) 4

L..._.A..--m.a—-d



1

-3 /w (6) o—poillo = Yol _ 45 4 w (g )
- S & -25-cos(eo-wo)+l 270
211'-11;0 1
-1 i 1 sin(8g + Yo) s
ﬂ/WZ(e) 2 ae + nfw3(6) 51-26-cos(6°+¢°)+1 d
w o
1 Yo o (emyo)
3 e T30~ W0 = o
Tn-y,) cos _71%:*6)' Ln [2 2cos (6 90)] a6
o (2.19b)
8 in 2y
1 o Sin A
= W, (8) ~ L
1 8¢ -20 o6, cos 2w°+6°
2ﬂ-w°
1
= l-GQ COS(G-HJ)O) 6
" ¥ 49) 1-285 cos (6+¥g) +352 3 ta¥gice)
v
? 2ﬂ-wo
= m(6-yg) " " 2
chos ZTTr_-!%g)_ Ln [l 260 cos(6+lpo)+6° ]de
wo
(2.19¢c)
In Eq.(2.19) W.,, W,, and W, are the unknown displacements
1 2 3
in the z-direction for the surfaces Cl'CZ' and C3 respec-

tively,and 6,60,9,90 are the remaining cylindrical co-
ordinate variables for the field and reference points. The
points Go Sl 60 =0, eo = wo' and 60 = 27~ wo are inadmis-
sible reference points in the Eq. (2.19), and Yo €(0,m).
Numerical solutions of the integral equations which
arise in this paper require particular attention to those

singular kernels whose integrals exist only in the sense of

a Principal Value. Special techniques to account for the




effect of the singular stress field near crack tips and
other critical points are also necessary for good numerical
accuracy. Therefore, a major section in Chapter 3 is
devoted to the discussion of these techniques, and numeri-
cal results pertinent to this chapter are presented without
explanation of the numerical processes used to obtain them.
Eq. (2.19) is numerically solved for selected values
of 0 <y, < 90°. Displacement values along the wedge faces
are of particular interest. A convenient parameter helpful
to the evaluation of the numerical results is obtained by
dividing the computed displacements along the wedge faces
by the exact solution, and fitting a least squares straight
line to this data. The intercept value for 6= 0 is labeled
NDP (Normalized Displacement Parameter). With the use of
the parameter NDP, all problem solutions for 0 < Vo < 90°
will yield NDP equal to one if the numerical error is zero.
Percent deviation of NDP from unity is thus a means of
evaluating the numerical accuracy of the results. The re-

sults are tabulated in Table 2.1.

TABLE 2.1

Anti-Plane Wedge Problem Results

T T
v, 90° (600 (450 300 259 209 150 [10° 50

NDP 1998 |.999 [1.001{1.006;1.02] 1.1} -- = A e
Error .2%| .1% .1% .6% 2% 108} ~20% N30%;>50%
o

i
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The results obtained for ¢°> 309 clearly support the
conclusion that the I.E. (2.19) is a proper representation
of the sharp wedge problem and may be solved accurately.

For values of Y < 309, the important displacement results
near the crack tip develop significant errors as b, ap-
proaches zero. These results are so badly behaved that they
render NDP meaningless when wo+ 0 and, the determination of
the stress intensity factors for wo = 0 is impossible by
this formulation.

The requirement for a unique parametric representation
of all boundary surfaces causes the computational difficul-
ties experienced above. A direct limiting process executed
on Eq. (2.19a) and Eq. (2.19c), taking special care with all

Principal Value integrals, shows

v Lim (Eq.2.19a) = " Lim (Eq. 2.19c)
o =0 o+ 0

This result is clearly manifested in the numerical example.
The determinate of the linear algebraic equation set ap-
proaches zero as Vo approaches zero, confirming that Eq.
(2.19) is incomplete in the limit wg-o.

Before proceeding with the developments necessary to

complete the I.E. it is convenient to rewrite Eq. (2.19) in

25




the following form,

W(sy _1 o o 1! o
171 nﬁl(sl) Kya/eyespda 96y nfwz (83 Ko dng #1108,
i | L

1 (o} =
- Ffw3 (53) K31(S3rsl) ds3 = Fl(sl) (2.20a)

3

1 o -1 ‘ o
W2 (52) = ‘n’fwl(sl) K12 (31152) dsl Tﬁz (92)K22 (sz,sz)dsz

; d
e o o
L ﬁv3(s3> K3p(83:59) as, = FalsD) ool
5

Wo(s.) _ 1 @ ;f 2
S n/wl(sl) Ky3(sy083) ds) _ 5 Wy(s,)Ky5(8,,83)ds,

1"l rz

ld/. =

- = Iw.(s,)K (s,s83) - ©

“r 3737733773773 s, = Fy(sy) (2.20c)
3

In Eq. (2.20) the symbols s, and s?, i =1 to 3 rep-
resent field and source points on the domains Fi. The
kernel functions appearing in Eq. (2.20) aré identified
from their counterparts in Eq. (2.19).

The influence coefficients corresponding to adjacent




source points on the upper and lower wedge faces are cal-
culated from Egs. (2.20a) and (2.20c). As ¥~0 the co-
efficients become equal, one approaching the limit value
from above and the other from below. This suggests that
if a sum and difference state relating adjoining wedge
face source points is formed then higher order functions
necessary to complete the governing I.E. may be identified.
A scalar 60 which measures the distance from the crack tip
to the paired source points is introduced. The sum and
difference state is achieved by first adding and then sub-
tracting Egs.(2.20a) and (2.20¢c) from each other with the

result:

ol
(wl“‘o) 4 w3‘°o’) "if Wy (s1)[Kyg fey80) + Kpz(sy06,)] 95

h

1
- '-ﬂ'-‘/;qz (52) [KZI (5216°)+K23 (52760)}d52

)
1
% F/wa (s3) ["11‘53'50)+ K;3(s3/8) ]dsa
€1
= F () + Fy(5) (2.21a)
W,(s3) - lfw (s,)K,,(s,,8%) ds =1 W,(s,)K,,(s,,s3)ds
2(83 7] W1(8))[K 5 (8y,85) ds) = T JW,(s,)K,,(s,,85)ds,
I
1 L
1
4 F/w3(53”‘32(53'55) ds, = F,(s3)
r3

(2.21b)




1
(Wy 800 - w3(ao)) - Ffwl(sl) [Kll(sl’ao)-KB(sl’Go)] ds,
3

T, i
L
- F/WZ (52) [K21(82:60)+K23 (52160)]d52 1
T2
1
- ;T-[w3 (53{1(31(33,50)- K33(s3,6) ]ds3
Ts
= Fl(So) - F3(60) (2.21c)

The operation Lim ¢b—v 0 performed on Egs. (2.21a) and

(2.19a) leads to identical equations. Taking the limit

as ¥y~ 0 in Eq. (2.2lc) results in the null identity. This

o i P i A e

limiting character of Eq. (2.21lc) suggests the following

assumption concerning the dependence of the integrals upon $
Yo . Assume, ‘
1 [ ] n
Ffwl‘sl) Ki1(s) /850" Ky3(sy,8)1dsy = wl“so"‘o[“’o fl(ao)]
1 j n>1l as w0+0
1 " 4 n l
Trf"’z‘sz’ Ky1(s508,) Ky3(s,,8,)1ds, Ol Yo £2(85)
L ..
n>1as yr0 .

1 * o n
F/W3 (53)[K31 (3850 K33“‘"3"50)]‘153 W3(<S,,)+0[ 4 £3 (6")]

n >1 as y20

n
Fy(8,/9 )= Fa (8 ,¥.) = O[ ¥y F(Go)] n>1as ys0 (2.22)
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Then Eg. (2.21lc) assumes the form,

- o n
Wl(ao) W3(60) (W1(60)+ lpo f1(60))

2° | o R |
+ wo le(éo) +(W3(<So) +y s f3(6°)) =y & F(do) “
(2.23) "
and after simplifying (2.23) it follows that
" [-fl(ao) + £5(8) + £5(8) - E(so)] =0
(2.24)

Eg. (2.24) may be satisfied if wo equals zero or by the
bracketed guantity vanishing.

In the following it is assumed that the bracketed

expression equals zero, thus implying the existence of an
additional constraint equation.

The arguments presented in Egs. (2.22) to (2.24) do
not provide a convenient method for extracting the neces-
sary equation, although its existence is implied. Assuming
n is integer, it is more convenient to differentiate n
times and take the limit as wo+o thus arriving at the
bracketed gquantity directly. Application of the technique
shows that only one differentiation is required for the

problem considered here.

Returning to the notation of Eg. (2.19) this leads

kit i o af




to the simple process

Lim 3 ; _Lim 9
¢o+03$; l Eq.(2.19a)-Eq.(2.19c)==wo+08$; {Eq.2.21c])
(2.26)
Executing these operations yields ;
. W, ,§ 9 1 § +sin 2y
Lim 1( 0)- -]L-—-/W (§) o ) 2
¥o>0 { Y LT 62-26'60-cos2w o+602
2Tt
_% a%‘ wz(e)[l-do-cos(e-wo) L g l-Go-cos(e+¢o) zlde
(o} 1 1-260-cos(6-¢o)+6O 1-260-cos(é-wo)+60
1l
W, ") P s%-26-5 ccos 2y +5 2
2m-Yo _ .
0 s sz i 1-260-cos(e-wo)+60 n
2 9, 1-260-cos(6+wo)+602

Yo
(2.27)

Eq. (2.27) will be shown to provide the additional infor-~
mation necessary to complete the I.E. representation of
the closed crack anti plane problem. In the following

a numerical-analytical technique is developed to allow
refomulation of Eq. (2.27) into a non-singular integral
equation thereby permitting direct numerical solution.
The technique begins by identifying those integrals which
exist only in the principal value sense in the limit as

¥ = 0 ; in this case,the integrals over the crack faces

containing wl(G) and W3(5). The Cauchy singular kern?l in
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the integral precludes interchanging the limit, differ-
entiation, and integral operators. To proceed, the sing-
ular points in each P.V. integral are identified and the

integrals separated into three integration domains as

follows:
| 8-H
P.V.f Wi(8) K(s,y,) d6=/w1(6) K(8,v ) ds
el o,
+P.V.fw1(6) K(&,9 ) as +fwl(6) k(6,¥.)) as
5-H b+ 1

(2.28)

For example, K(§ wo) may have the form

K(8,v,) = §o°8in 2¢

2
§°-26 So-cos 2w0+6o

2

K(6,wo) is singular for &= 60 in the Lim wo* 0. The

integrals
6-H 1
§
Sir sy ¥y as . fu ) x v,y @
0 6+H

are Riemann integrable and sufficiently well-behaved to
permit interchange of differentiation and limit operations
with the integral. The P.V. integral in Eq.(2.28) has

been restricted to the domain of integration




60 -H<d6< 8§, +H . The value H is selected to be real
and positive such that it is always less than or equal to
the smallest value of 60. Since the numerical solution of
the integral equations proceeds by the method of finite
differences requiring satisfaction of the equations at a
finite number of collocated points, H is conveniently

chosen aé the value of the division size.

A T e analysis of the P.V. integral requires an
approximation of the functional behavior of the displace-~
ments on the crack surfaces. The 8 functional depend-
ence near the crack tip is well documented (34,35). A
two term approximation for the crack tip displacements in

the domain 6§ - H <8 < 6 + H is selected which generally

takes the form:

5
c,$ +C,

%1 (0 1

For surfaces near the crack tip, a value ofyY = 1/2
is used. The linear formy = 1 ig used for surfaces removed
from the crack tip.

The constants C1 and C2 are dependent on the values
of Y selected as well as the values of the unknown dis-
placements evaluated at points 6§ = 50 - H, 50, and 50 + H.

The Cauchy principal value integral may now be

32
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approximated by

8o +H So+H
P.V. fwl-K (G,wo) aé = c, P.V. §Y-x (G,wo)d‘s
Go-H ‘SO.-H
§o+H
+ C,*P.V. fK(s,wo) d§ = €y Ty (w,) + CyeTy(y,)
So-H

The P.V. integrals J1(¢o) and JZ(WO) are analytically
evaluated. Differentiation w.r.t. ¥, followed by Lim ¥+ 0
o]
are operations easily performed on the resulting closed

form expressions for Cy J + C, JZ(WO)' Analytical

1(5) 2
expressions result which depend on the value of Y and
are called insert functions. Performing the remaining
operations in Eq. (2.27) yields the desired equation.

A system of integral equations which result from
&;P (Eq.2.21) may now be written. Using the detailed
;;tgtion of Eq. (2.19) and completing the details for Egs.

(2.21a,b) yields

l-Go-cos 5]
1-28 <cos 6+6°2 aé ~H,(8,)

34
1
- wys ) + 2 f we)
o
1 21T 8 2
ot sz (8)» Ln %1-2<So-cose+qp ase .

o
(2.29a)

orpee

= =




1

in @ _
i ./' sin o i
= W. (§) de - W,(8.) ;
g ¢ [a‘f-za-cose +1 AR A
(o] (o]
1 fzn i 3l fl cos 8,
+ = W, (8) 5 d6 - = W dé
¥ - e L . g2-26-cose +1 '
(o] (o] (o] L
i
1 " 2 !
= Tz(e) Ln ;2-2 cos (e-eo)z do %
S} 1

while from Eq. (2.21c) it follows that

1

GO-H
1 j' 2t [ 260 ] 1 f [ 260
= W, (6 —_— 14§ + = W, (8) | —m——=
T 1 2 i 1
g (8=6) (8-6)

60+H

(/8- /5=R) (/B +/8 +H)

(2.29b) h

———

2] ds

P

, 275,
wl(é) T H (ﬁo'f'ﬂ + /GO-H + Ln

(/S +/8§ -H
(o] (o]
27

-5 2 i
1 260(1 60 ) Sin ©
= wz(e) - deo
(1—260Cose+6O )

<+

(o]

1 278,

(/XS-JSO-H)(/E;+/SO+H)

) (/8 _+H- /3';)

(o]
+ w3(60) 5 -—l-i—-(ffoﬂi + JGO-H)+ Ln

1

el

60+H

27

= 260 Sin ©
= Tz(e) 5 de
1-26 CosB + §
o o

A

34

(/§;+/60-H)(/30+H-/3;)

§ -H
f° 26 3
W, (8) | ———=| a5 - = f W (6)
3 2 m 3
& (6-60) (8

260
ds
2
_50)
(2.29¢)




In the foregoing

ve[0,1) 6e(0,2m]
Pe[0,1] 8oc[0,2n])

and T, are normalized tractions prescribed on the cir-
cular boundary. Eq. (2.29c¢) incorporates the insert
function assuming piecewise square root displacements on
the crack surface, i.e.Y = % s

Investigation of the set of integral equations (2.29)
shows them to be a quasi-regular system of Fredholm equa-
tions of the second kind as defined in Muskhelishivili,
pp. 415-417 (32). This assures that a unique solution
exists. It remains to show by example that this solution
represents the cracked anti-plane boundary value problem
of elasticity.

A numerical solution of Eq. (2.29) was obtained. The
details of this numerical technique shall be discussed in
a special section in Chapter 3. Comparison with the right
circular cylinder (¢ a5 2 0) problem discussed earlier, for

. 0 : ;
loading T = % cos 3 tractions, provides the neces-

z(8)
sary verification. The numerically determined displacement
field on the boundary surfaces were accurate within 1% as
compared to the analytical solution. These results con-
firm the limiting process developed for the anti-plane

crack problem. Eq. (2.29) may now be assumed to be a

complete formulation of the anti-plane cracked body

e o L "




problem of elasticity.

2.3 The Plane Elastostatic Ciacked Body Integral Equations

The plane elastostatic cracked body integral equations
are developed by extension and generalization of the tech-
niques used in the anti-plane problem. A traction loaded
plane body with m number of edge cracks as shown in Fig.4a
is considered. Fig. 4b illustrates the modified "open"
crack geometry necessary to begin the analysis. This geo-
metry retains the sharp crack tips and corner point
description. Each open crack surface and all external
boundaries are modeled by continuous parametric expressions
which best lend themselves to the shape under consideration.
A single parameter ¥, is chosen which allows modeling the
modified geometry of Fig. 4b and, for the i;?o, yields the
closed crack geometry of Fig. 4a. The Kth crack surfaces
are labeled C;, c; where the upper (u) surface has been
arbitrarily chosen to differentiate it from the opposite
crack face, called the lower (L) face. The set of all
crack surfaces Cg + C? + < o+ C; + C; + . -+ C: + Cz
is designated C. The external boundary is labeled S.

The plane elastostatic system of I.E. (2.14) applies
directly to the modified geometry with the exclusion of
crack tip and corner reference points. The exclusion of
these points eliminates the need for rounding the corners

which introduces additional complexities. As in the anti-

plane problem no theoretical compromise or numerical
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inconvenience occurs from this restriction.

This coupled pair of I.E. is separated into parts by
writing individual equations for each crack surface and
external boundary. Recalling Egs. (2.5) and (2.7) for

definitions of Uij and Tij' Eq. (2.14) assumes the form

ug () - 2 o_t/uam;g) Tog(2l, o) das ()

u
Cx

-2 g_/;;a(ollz) Ty (Pg) dS(0L)
9
<k

Uy (QU) Top (Py,0)dS(QY)

'\'\

% T e et +...C;

€ 2 ko1t Ckel

L u
L,.L
C1+C2+...+CK 1+ K+l+...C

-2 g./ua(QS) TGB(PEIQ) ds‘Qs)
S

u
- -2a [tam U,q(Pgs@) dS(Q)

C+S
(2.308 uK)
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w2 _ , 0‘/u(,‘(o) T, (Pg,0) dS(Q)

=2 gﬁla (Qg) T,o (P ,Q)) dS(Q.)
S
= -2 g_[ta (@) U, (P Q) dS(Q)

Sib's (2.308S)

L
i (P = L L ,u u
8V K - 2 o_c/ua(ox) T,a(PxrQ) dS(Qy)

Cu

K
L L L L
-2¢ /ua(QK) T,q (PrQ) dAs(p)

L
CK

{
N
IR

u L u
/ua(Q ) T,o(Pgs Q) ds(@)

- L u L
2 ¢ fu (@) Tg (Pg,Q) dS (Q7)

L

L
R

CK+1+. . »

L
+C
} -2gqg fu (QS)TaB(Pi,Q) as(Q,)

- _ L
, = =7 c_x_/ta(Q)UaB(PKr Q) ds (Q)

C+$S
(2.308LK)
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where

a=1,2 B8 =1,2 K=1,m (no sum on K)

Egs. (2.30) may be considered as a system of coupled
integral equations. The K index represents the decomposi-~
tion of the I.E. over the selected crack faces. Egs.
(2.308uK) represent the subset of equations whose reference
points lie on upper crack surfaces, there being K = 1,2..m
such equations, one for each crack. In like manner, Eg.
(2. 30BLK) represents m equations whose reference points
lie on the lower surfaces. Eq. (2.308S) is the remaining
equation for reference points located on the external
boundary S. As an example of this notation, the function
uB(PE) is interpreted as the displacements in the Xg

direction for the set of points PE which lie on the upper

u
K

function defined in Eq. (2.7) evaluated for reference points

surface of the Kth crack. The kernel, Tae(P 'Qﬁ), is the

on the upper Kth crack surface (PE) and field points on the

lower Kth crack surface (Q;). Integration variableé con-

taining sub or superscripts assume their normal meaning.
The rewriting of Eg.(2.14) as Eg. (2.30) permits

the separation of the integrals into Cauchy principal

value and Riemann integrals. In both Eg. (2.308uK) and

Eq. (2.308LK), the P.V. integrals appear as the first two

integrals in the equation, the remaining inteyrals being
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Riemann integrals. In Eq. (2.30pS), the integrals over the
boundary S exist only in the P.V. sense, all others are
Riemann integrable.

The similarity of Eq. (2.30) to the governing I.E.
for the anti-plane problem is evident. It may be shown
that the kernel functions in Eq. (2.30) and those in the
anti-plane representation, Eq. (2.19), have similar be-
havior. The kernels are still Cauchy singular although the
complexity of the kernel functions increases greatly.

This result could be anticipated since both formulations

rest upon the same mathematical development. Following

a similar approach as in the Mode III problem a complete

set of governing I.E. is formulated for Mode I and II prob-

lems. Proceeding as in the Mode III case, Eq. (2.30) is
Lim

recombined and a "

ol operation performed in the following
(]

sequence.

3 Eig { Eq. (2.24BuK) + EQ-(2-24BLK)}

o (2.31a)
Lk Eq. (2. 2485} s H A0S
o

Lim 3
b 0 {zq.(z.24sux) 2 zq.(2.24sLx)}
° Yo (2.31¢)
where 8 =1,2, K=1,2 . . .m

The above operations are performed for each 8, K




egquation with special care exercised for those integrals
which have Cauchy singularities. Egq. (2.30a) and (2.30c)
each yield a minimum of 2m equations and Eq. (2.30b) yields
a minimum of two more equations. Thus, a geometry with m
external cracks requires a minimum system of 4m + 2 coupled
integral equations. Complicated crack or external boundary
shapes, requiring multiple parametric representation may
require further decomposition of the equations with a com-
mensurate increase in the system of governing equations.

An example problem is solved using the geometry of
Fig. 2 for wo = 0 and for surface tractions resulting in
both Mode I and Mode II states. The detailed results are
reported in the next chapter and compare within 1% to the
exact analytical solution. The accuracy of the solution
of Eq. (2.29) for the anti-plane Mode III example and
Eq. (2.31) for the plane, Mode I, II case gives a numerical

verification of the effectiveness of the method.
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CHAPTER 3

MODE I AND II PROBLEM STATEMENT AND INTEGRAL REPRESENTATION

The solution technique for Mode I, II and III load-
ing developed in Chaﬁter 2 requires numerical verification.
A circular disk with a simple edge crack is selected for
study because it possesses a known closed form analytical
solution for certain specific boundary conditions. This
disk is in a state of plane strain and subjected to Mode I
& II loading.

An accurate solution of this problem via Egs. (2.31)
serves as a numerical verification of the plane elastostat-
ic solution method. A bent crack geometry which has drawn
considerable attention [36,37] recently for application to
mixed mode fracture is also considered to demonstrate the
general applicability of the method. This geometry is asy-
metric and involves stress singularities at the bend vertex
in addition to those at the crack tip. A limiting case of
this geometry is the straight crack; therefore only the
general bent crack formulation needs to be presented, since
both straight crack and bent crack results follow. The
bent crack problem statement and equation formulation is
presented in Sec. 3.1, and tﬁe development of the numerical
solution technique is discussed in Sec. 3.2. The mode III

problem was extensively discussed in Sec. 2.2. It's numer-




ical solution is obtained by a similar process to that pre-
sented in Sec. 3.2 and need not be discussed further.

3.1 Bent Crack Problem Formulation

A cracked circular domain of radius R, as shown in
Fig. 5, is considered. A cartesian coordinate system, xy,
having its origin at the disk center,is employed. A
straight crack of length d intersects the circular surface
and lies on the x axis in the region xe[f,R]. At x=f a
secondary straight crack of length ¢ emanates at an angle a
to the x-axis. The values of ¢, d, and a are restricted
only by the requirement that the secondary crack must not
penetrate the circular boundary S. Solutions for the trac-
tion boundary value problem for several loadings on the ex-
ternal surfaces are to be obtained numerically.

Analysis of this problem begins with the construction
of the modified open crack geometry shown in fig. 6. The
secondary crack is opened from the crack tip by an angle
2y, so the primary crack has uniform separation
2g=2cC-cosa*tan wo. The x-coordinate value of the crack tip
is labeled e while the projection of ¢ on x is denoted by
€. The individual surfaces forming the boundary are iden-
tified by Fi, i=]1,2++-+*5 (see Fig. 6). A normalized geom-
etry, Fig. 7, is obtained by dividing all length variables
by the radius R, capital letters denoting the normalized
variables. On the bent crack surfaces Fl, FS the distance

r

from the crack tip, p, locates field points, while B iden-




tifies source point locations. On the straight crack sur-
faces F2' F4’ field points are located by the variable x1
and source points by Bz, both measured from the coordinate
origin . On the circular boundary P3’ the radian mea-
sure 0 locates field points and eo the source points. As
previously discussed the modified geometry needs no crack
tip or corner rounding if thé set of reference variables
are restricted to an open set excludina these points.

The pair of coupled B.I.E. (2.14) applvy directly to
the modified bent crack geometry with crack tip and corner
points excluded from the reference set. Egs. (2.14) are
separated into five parts by writing individual equations
for reference points located on the discrete Fi boundaries.
This decomposition permits examination of the P.V. integrals
and allows application of the solution method discussed in
Chapter 2. Thus, Eq. (2.14) yields.

i g/cos wo
:X_ uJ(P) + ~/ﬂ[ul(p) . KIJfP,p) + vl(p) . KIIJlldp
0

1
+ flu(X1) .
ﬁ 2 KI;p (P,X1) + v,(X1) * KII;, ]d X1
F+C- tan wo * tano
2w-C-tap wo
+ . .
/[u3(6) KI 3 (P,0) + v3(9) KIIjy ]de

C-tan wo




1
+ ﬁ“ﬂﬁ) * KIg, (P,R1) + v (R1) - KII;, ]dg]

F-C+tan wo * tan o

= cos wo
+

[usto - k1, (P, 0) + ve(P) | KII;q ] dp
0
_ A
= FJ (P)

(3.1a0)
g/cos wo
1
_ZVJ (P)+ ﬂul(p) . KIIIJl(p,o) + vl(p) * KIV J1 }dp
0

1
+
ﬁuz (X1) - KIII,,(P,X1) + Vo (X1)° KIVJZ}d il

F + C +« tan wo°tana

27=Cetan wo

+
{u3 (8). KIIIJ3 (P.eo) +v3(6) . KIVJ3 }de
C tany,
i

+

/{u4 (x1). KIIIJ4 (P A%L) +v4 (¥1) . KIV,, } d %1

F-C-tan wo-tan a




c/

=" cos wo

+ [us(o) + KI5 (B00) +95(0) - K 1V5]

(o]
_maE
= FJ (P)
(3.1BJ)
where
aLn RJL
KI, (P,0Q) :{x - deueMeRy }_5_":,
_ aLnR
P = -4 e 11 M .
KII  (P,Q) = { doueM Ry o RJL'X} EmJL
H

K { (Ln RJL) 'Y rlx" (Ln RJL) ' X T'ly}

oLnR

. JL
RJL,y RJL,x } on

K11, (P,0Q) E{—4'p'M' :

—K{[(Ln Ryp) .y n, = (Ln Rip)ix uy]}

3 Ln R

P = =l 1| .

K1v, (P,Q) _{[K 4-uM Riv,y Rop,yl } _an*JL'
L
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A =
FJ (P) = E

L=1

B "
F; (P) =§:

J,L=1,2, ... 5

1 . 2 L]
r ﬂth(Q) (% Ln R®; +MRyy o Ry )
L

+£ L(Q) © MRy ¢ Ry o } as_ (Q)

IVP*

( . 2 L 2
f’ tor,' D (s Ln R +MeRy Riv,y
I
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no sum on repeated indices

unless indicated

) ——




- 1 2 _ 2, %
Ry = { (X5 (Q) xL(P)) + (YJ(Q) YL(P))
n, = unit normal on surface IL
M = =(A+p) /(A+3y)
_ 2
K = 2u%/(-A+3n)
A = - (A43u)/2mu(A+20))

' .
U,A are Lame's material constants.

In the notation of Eg. (3.1 AJ) and (3.1BJ), J takes
on values from 1 to 5 creating a system of ten coupled
equations. The reference point variable P is understood to
have meaning B, B2 or 60 depending on the Ty reference sur-
face for which the equation applies. The kernel functions
KIJL’ KIII

KIII and KIV,, defined in Eq. (3.1) , are

JL' JL'
presented in algebraic detail in Appendix A. Kernels hav-
ing repeated indices in Eq. (3.1l AJ) and (3.1 BJ) are singu-
lar in the lim Yy, + O and integrals containing such kernels
exist only in the Principal Value sense.

To proceed, form a sum and difference state on those
equations having source points on the crack surfaces. This

is followed by the limiting operation lim wo +0, after dif-

ferentiation with respect to wo in the case of the differen-
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e o

ce equations. These operations may be summarized as fol-

lows:
Lim
vy +0

0

{Eq. (3.1 A1) + Eq. (3.1 A 5)} (3.2 A 1)

Lim  (Eq. (3.1 A 2) + Eq. (3.1 A 4)) (3.2 & 2)
Yo > O
Lim
Vg * O {Eq. (3.1 a 3)} (3.2 A 3)
Fim {3%—[Eq. (3.1 A 2) - Eq. (3.1 A 4)]} (3.2 2 4)
Yy * O 0

Lim 9
Vo > O {5$E[Eq. (3.1 A1) - Eq. (3.1 A 5)]} (3.2 A 5)

Lim

by + 0 {Eq. (3.1 B 1) + Eq. (3.1 B 5))} (3.2 B 1)
woLimo {Eq. (3.1 B 2) + Eq. (3.1 B 4)} (3.2 B 2)
wOLimo {Eq. (3.1 B 3)} PR
¢0Lim0 5%;{[Eq. (3.1 B 2) ~ Eq. (3.1 B 4)]} (3.2 B 4)
¢0Lim0 5%3{[Eq. (3.1'B 1) -~ Eq. (3.1 B 5)]} (3.2 B 5)

The mathematical operations indicated in equation
(3.2) are performed using the techniques discussed in Sec-
tion 2.2, The singularities are removed by assuming a

piece-wise functional behavior for the unknown displace-
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ments followed by analytical evaluation in the neighborhood
of the singular point of each principal value integral. a
key requirement for the successful performance of this ana-
lytical step is knowledge of the correct functional behav-
ior of the unknown displacements. Fortunately, this behav-
ior is well known.

in general a satisfactory representation is given by

u = C1 £Y+C., where the selection of the parameter y de-

2
pends upon the surface in question. This selection of y is
treated in detail in Section 3.2. The analytical evalua-
tion of the integrals in the neighborhood of the singular
regions results in algebraic functions labeled insert func-
tions. The equations which result are a coupled system of
simultaneous non-singular integral equations of the second
kind.

The completed equation set (3.2) is presented in Ap-
pendix B. Section B.l contains the functional form of the
integral equations, detailing the geometric kernel func-
tion. Section B.2 contains three sets of insert functions,
one for each of three classes of aésumed displacement func-
tionals. Section B.3 presents the detailed forcing func-
tions for general traction loading on all surfaces.

3.2 Numerical Solution Technique

The numerical solution of Egqs. (3.2) proceeds direct-~
ly by employing the standard methods developed for non-

singular Fredholm equations of the second kind. A finite
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number of mesh points partition the boundaries Fi. The in-
tegrals in (3.2) are similarly partitioned and the unknown
displacements approximated within these intervals. The in-
tegrals are numerically evaluated, resulting in a set of
influence coefficients which operate on the unknown dis-
placement vector evaluated at discrete mesh points. The
continuous representation of Egs. (3.2) is thus transformed
into a iinear system of algebraic equations.

The left side of Egs. (3.2) shown in Section B.l leads
to the algebraically equivalent system involving the influence
coefficient matrix and displacement column vector. The
right side of (3.2) generates a column vector of forcing
functions representing the traction loading.

Lheld Twl}l =& F I (3.3)
The resulting matrix equation (3.3) after row elimination or
coefficient substitution for the supression of rigid body
motion may be solved directly. Calculation of the influ-
ence coefficients forming the [C] matrix begins by parti-
tioning the boundary as illustrated in Fig. 8. M1l points
are located on rl and rs with equal spacing H1=C/(M1 + .5).
or T

The last reference point on T is located H1l/2 dAis-

1 5
tance from the bend vertex. SurfaceI‘2 andlh contain M2 points
spaced H2 = D/(M2 + .5) apart. The mesh point nearest the
bend vertex is again spaced H2/2 from the bend point. A

total of M3 reference points are equally spaced on r3 with

H3 = 2n/m3 + 1). No reference points are located on the
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crack tip, bend vertex, or erack corners.

The numerical evaluations of the integrals proceeds
by employing the partition just described. The unknown dis-
placements are approximated in a piecewise manner by the
function

usa g +c ve [%,1]
(3.4)

where £ is understood to be §, X1 or 6 depending on the in-
tegration domain. Al and C, are coefficients involving the
unknown displacements at the mesh points. Then, a typical

integral term in (3.2) may be written as

B- H (n+1) H

/l(p) K rP) g5 = E fl(p) K(p,8) qp

N (n+l)Hl (n+l)Hl
= E A f pYK(p,8) dp + C_ fK(p,B) dp
n=o n-Hl n'Hl (3.5)

The integrals appearing in Eq. (3.5) are further partition-
ed into an even number of M subintervals and numerically
evaluated by Simpson's rule.

The insert functions discussed earlier and presented

in App. B.2 contribute the dominant diagonal coefficients in

the "C" matrix. These functions result from the analytical

evaluation of the P.V. contribution and their accuracy is
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directly dependent on the quality of the assumed unknown
displacement function. The non-singular integrals in the
near neighborhiocod of the singular points also result in
large coefficients located in a band on either side of the
diagonal elements. The accuracy of these coefficients is
dependent on both the quqlitonf the assumed displacement
function and the accuracy of the numerical integration.

The functional behavior of the boundary displacement
near the crack tip and bend vertex are well documented.
[36, 38, 39]. The numerical analysis uses the square root
functional, y=%, for M1l-2 partitions on Fl and for M1-4
divisions on Fs. The bend corner formed by the common
point on Pu and Ts is similar to a sharp wedge [39). The
displacement field in the neighborhood of the wedge vertex
has the form (3.4) with y determined from the first posi-
tive real root of the transcendental equation

sin (y(n+a]) + yesin (1+a) = 0 (3.6)

Values of ae (0,m) result in ye (%,1),
This displacement approximation was employed for numerical
integration of the non-singular integrals and for the ana-
lytical evaluation of the insert functions over a ten refer-
ence point domain. This domain includes 5 mesh points on
F“and 5 points on Fs surrounding the vertex surfaces. By
restricting the bent crack angle a to be positive a linear
displacement function suffices on the upper bend vertex.

This is appropriate because under these conditions only the
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lower surface possesses a singular behavior near the vertex

[34,39,40). On all of the remaining surfaces, the dis-
placement components are modeled by piecewise linear func-
tions. It should be noted that to insure compatibility of
results similar displacement functions were assumed for
both the analytically determined insert functions and the
numerically integrated coefficients, depending on the sur-
face of integration.

The accuracy of the numerical integration is ascer-
tained by conducting numerical experiments on the most sen-
sitive integrals. Taking advantage of the 16 digit accur-
acy of the CDC 6600 computer and using the simple Simpson's
formula, most integrals are successfully evaluated
(<<1% error) by a subpartition of M = 20. The most sensi-
tive kernels require M = 250. In this manner the geometric
influence coefficients forming [C] are calculated. The
matrix [C] is full with the dominant influence coefficients
banded along the diagonal.

Generation of the forcing function matrix proceeds by
direct use of the Simpson approximation. Statement of the
traction loading on each boundary completes the definition
of the integrals shown in App. B.3 and evaluation proceeds
by direct numerical integration. A partition of two-
hundred evenly spaced points for each surface provides

accurate results (<1% error).




This numerical reduction of the integral equations
reduces Egs. (3.2) to a system of 2{+2+(M1+M2) + M3} alge-
braic equations in the same number of unknowns. Solution
of this algebraic system by standard numerical methods then
leads to the values of the displacement components at the
mesh points.

The necessary computations for the examples presented
herein were performed on a CDC 6600 computer. This compu~
ter features sixteen digit accuracy; thus, no special dou-
ble precision operations were utilized. The program re-~
quirements dictated Ml = 8, M2 = 7, and M3 = 11 as minimum
values for the general bent crack problem. The upper limit
was established by accuracy requirements (+v1%) and seldom
exceeded 130 equations. This equation size required
130,000 memory units and sixty seconds to compute coeffi-

cients and solve the eguations.
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CHAPTER 4

NUMERICAL EXAMPLES AND DISCUSSION

Attention is now turned to two classes of problems. i
The first consists of two problems for which analytical
solutions exist, thus permitting verification of the ]
solution method. The second class of problems presents g
results for the bent crack as a function of crack angle U
and loading mode.

4.1 Numerical Verification Examples

EXAMPLE #1. The circular disk with a straight edge

crack equal to the plate radius has an analytic closed

form solution for specific traction loadings. This geometry |

is a special case of the bent crack shown in Fig. 5 with
@ equal to zero and ¢ plus d equal to R. The governing
biharmonic equation for the Airy stress function is solved
using the technique developed by Williams (34,35). A trac~-
tion loading, equivalent to the first term in the Williams'
solution, is thus generated to develop a special problem
possessing a closed form solution. A problem summary of
the required traction loadings and the resulting displace-
ments for each boundary surface follows using the notation

in Chapter 3;
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Traction Loading on Boundary Surfaces:

upper e 8 t = t = 0
crack 1 x1 yl
face
T'Z: tx2 = ty2 = 0
lower r . t = t = 0
crack 4 x4 y4
face
T . t = t = 0
5 X5 Y5
circular r . t = KI A 2,0
3° X3 sin 8)3 ‘cos® (<)
boundary 7 3 2
+ K )
a1 cos —!3 cosz(g
2 2
K 3
= 6
ty3 L sin ~ {— sinez
Jam 2 (2
TRyt sin 8 {3 cos (8) -
V2 2 2

Dimensionless Displacements in x-direction:

I'l: ul(p) = Co G'KII

1 L Tl

o U2 (x1)= Co VX1 Kpo

¥ 1E u i

4 4(x1) = —cofr?l -

b5 b R

=
—

P AR T

FXN TN R




g N © vad & =
T ys u, (8) = "o K; {cose sin (5)+(2(1-V)-sin

2

2g
=3

)

-sin 6 -+cos (%})(cosz(%—) + (l-2v))}

+ 7o L 6 e 82 G0,
= KII cos0 -°cos 5 (3°cos >
-(2v + 1))
- sin 0 °sin %— (3° sinzg— + 2V -4)

Dimensionless Displacements in the y-direction:

Iy vy = ¢ b Ky

Iy: v, (XD)= coJTﬁ Kyg

T4: v4(X1) = - Co X1 K,
T e = e .
g vs(o) coJo K;
: 0 2 6
. s e = c 1 1} —— = -y —
3 v3( ) 20 K;{ sine sins (2(1-Vv)-sin 3 )

+ cos® cos %— (cos2 g— + (1-2Vv))

(Eq. continues on next¢ page)
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0 e - AR p
KII sin cos (3 .cos

N
N|cp

- (2v + 1))

. 6 .. 2 8
+ cos® sin 2‘(3.51n 2—+ 2(\)-2))}

(4.1)
4 (1-v?)
where CO = ————% and Vv = Poisson's ratio
E y2 1w

E Young's modulus
and u, v represent displacements in the x,y directions
respectively.

The loading for this problemis confined to the cir-
cular boundary and generates both Mode I and Mode II states
I and KII
are explicitly represented in both traction and displace-

at the crack tip. The stress intensity factors K

ment equations in (4.1). KI and KII are arbitrary and may
be set equal to unity in the traction equations above.

The B.I.E. (3.2) are solved for this geometry and
traction loading stated in (4.l1). The resulting displaéé-
ment solutions are recorded and used to calculate the stress

intensity factors and strain energy of the body. The stress

intensity factors are analytically defined by the formula

_ Lim y o LAl W=e(pd
K = nl(D)_p_*onS

E P*o0
CoN@ CON@
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R L LGRS pL_j;moUt5(p)
P c /P c /o (S

where Up,Ut are normal and tangential displacements.

The numerical calculation of these factors proceeds

by first forming the expressions

-

x Upp (P)- Upslp)
1(p)

2c°~/b

Ut1 (p)-UtS5S (p)
2 C, WP

K2 (o)

calculated for p € T'; Ts and determining their values as
p >0 by extrapolation. The calculated stress intensity

factors then follow from (4.2):

1 = %10
(4.3)

B0 S hG00

The strain energy is calculated from the boundary displace-

ments and traction loading by use of Clapeyron's theorem(41),

= 4

The displacements calculated at the mesh points are numer-

ically integrated with the tractions using Simpson's

o




formula to complete the calculations.

EXAMPLE #1 - Results

The results for example #1 are summarized in Table
4.1 and 4.2. A parametric study is presented to test
the sensitivity of mesh size and percent square root ap-
proximation on the accuracy of the numerical solution.
Fifteen examples are cited for fixed C and D values (as a
function of mesh size - M1, M2, and M3) and MT, the total
number of equations in the matrix. The calculated values

of K_,K

, and the strain energy ratio DeleTen e
II E_ Exact

I’
compared to unity to assess the accuracy of the numerical
solution. The maximum error in either K s KII or E_ is
listed in the last column.

Most of the results indicate less than 1% error for
a wide range of mesh sizes. Errors over 1% are generally
exhibited when the ratio of the partition sizes Hy and H,
on C and D, is greater than 3 to 1. The error sensitivity
to the partition ratio of Hl/H2 is understood by inspection
of Eq. (3.2) which generates the influence coefficients.
The dominant coefficients result from the kernel functions
generated within and between the C and D crack faces, these
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